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ABSTRACT

In an industrial context, recovering a continuous model is necessary to make modifications or to exchange
data with a format including continuous representation of objects like STEP. But for many reasons, the initial
continuous object can be lost after a display or an exchange with a discretized format. The mesh can also be
deformed after a numerical computation. It is then important to have a method to create a new continuous
model of the object from a mesh. In case of CAD object, the first step is to detect simple primitives like: plane,
sphere, cone and cylinder from a 3D CAD mesh. This paper is focused on this step. This method of detection
use curvature features to recover each primitive type. Segmentation is based on the curvature feature computed
for each vertex. It permits to extract sub-meshes. Each one corresponds to a primitive. Parameters of these
primitives are found with a fitting process according to the curvature features.
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1. INTRODUCTION

In the industry, it is important to have a continuous representation for a CAD model. This representation is
appropriate to make modification, data exchange or comparison with manufactured object. These models are
composed of primitives like planes, spheres, cylinders, cones or parametric patches. But to be displayed or to
make numerical computation, the CAD model must be discretized to obtain a mesh. The initial continuous object
can be lost. In others cases, it does not correspond anymore with the mesh, after a numerical computation, for
example. Then a reverse engineering process is used to recover a continuous model. The method to extract
planes, spheres, cylinders and cones, for a given mesh created from a CAD object, is proposed in this paper. In
this work, we consider that the object has not been distorted by noise.

In previous work1 , we have proposed a method to extract parametric surfaces. A method to detect the mesh
part which corresponds to simple primitives is now proposed, allowing to extract shape feature of each primitive
with curvature informations. Indeed the curvature behavior depends on the primitive type and of the primitive
parameters. So we can be used it to make the segmentation according to the primitive type and to determine
the parameters of the primitives.

The section 2 presents the previous work focused on this problem. In Section 3, we describe our method
which consists in finding and computing primitive parameters in a same process, then we present the results in
Section 4 and to finish we conclude Section 5.

2. OVERVIEW

These last years, many methods have been proposed to extracting primitives in a reverse engineering (one can
find a review in Varady et al.2) They are generally composed of three steps:

1. Segmentation: the mesh is divided into sub-meshes, by computing at each vertex, some shape features and
by aggregating the vertices with present similar features,
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2. Classification: a primitive type is associated to each sub-mesh,

3. Fitting: the parameters of the primitive are computed for each sub-mesh.

In the method described by Benko et al3, 4 the shape features are based on the co-planarity between neighbor
triangles in order to detect the sharp edges of the mesh. Then, a plane is fitted to each sub-mesh. If the plane
is close enough to the sub-mesh, it will be kept. Otherwise, the sub-mesh is approximated with more complex
primitives as a sphere or a cylinder or etc ... until it corresponds quite well to the sub-mesh. The result may be
improved by adding some constraints as tangency between primitives.

Several papers deal only with one step. For example, Bohm et al5 and Lavva et al6 expose techniques to
segment and classify the sub-mesh, using curvature features. Sunil et Pande7 base the segmentation and the
classification steps on the dihedral angle and on the size of each triangle. Lukács et al8 and Schnabel et al9

propose solutions to fit primitives on a sub-mesh or a points cloud. The first method uses an approximation with
all points whereas the second defines one primitive for each point group (for example, group of three points for
a plane) and keeps the best one. Primitive recovering can be used also only to segment the mesh as in Attene et
al.10

Our method is based on shape features which are defined by discrete curvature. Many methods to compute
the curvatures have been proposed. A review and a comparison of them can be find in Magid et al.11 These
methods can be classified on three main classes: quadrics fitting,12 Gauss-Bonnet scheme and Euler formula.13

In the following, we chose to use a method based on the Euler formula.14

3. PRIMITIVES DETECTION METHOD

The curvature at a point P on the surface S is defined by the minimum and the maximum curvature and by
the two directions corresponding to the tangent vectors for which the extremal curvature are reached. They are
called : principal curvatures (kmin and kmax) and principal directions (−−−−→Dirmin and −−−−−→

Dirmax).

Simple primitives, like planes, spheres, cones and cylinders, have specific curvature characteristics. In the
case of a plane (see Figure 1(a)), the value of curvature is equal to 0 at each point (kmin = kmax = 0). For a
sphere (see Figure 1(b)) all the points have the same curvature and its value is equal to the inverse of the sphere
radius (kmin = kmax = 1

Radius ). The cone or the cylinder points can be defined by one principal curvature equal
to 0 with the corresponding principal direction following the cone or cylinder generating line. Furthermore, the
other principal curvature is then equal to the inverse of the cone or cylinder radius, as shown Figure 1(c).
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P1
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Figure 1: Primitive curvature features.

The curvature characteristics summarized on Table 1 will be used in our method, to segment the sub-meshes,
classify and compute primitive parameters.

kmin kmax
−−−−→
Dirmin

−−−−−→
Dirmax Illustration

Plane = 0 = 0 not defined not defined Figure 1(a)
Sphere = 1

Radius = 1
Radius not defined not defined Figure 1(b)

Cone/Cylinder = 0 = 1
Radius = generating line not used

= 1
Radius = 0 not used = generating line Figure 1(c)

Table 1: Curvature features for each primitive type
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The proposed approach is composed of three steps:

1. Principal curvatures and principal directions are computed for each mesh vertex;

2. Neighbor vertices having the same curvature characteristics are grouped in sub-meshes. A primitive type
is associated to each sub-mesh, using characteristic features which allow to create it;

3. A primitive is fitted on each sub-mesh. The curvature values are used to find the primitive parameters,
according to the primitive type.

3.1 Planes and Spheres

For each point which belongs to a plane or a sphere the curvature value is the same, so kmin = kmax. These
values are equal to 0 for a plane and to 1

Radius for a sphere.

To find these primitives, neighbor vertices having |kmax−kmin| < εsameCurv are grouped in a same sub-mesh.
A first vertex with such features is found and vertex neighbors are studied to propagate the sub-mesh.

• After, for each sub-mesh, fitting is performed by a least square method. If |kmax+kmin

2 | < εisP lane, param-
eters which correspond to the coefficients of the implicit plane equation (1) are computed with a linear
regression (see equation (2)).

ax + by + cz + d = 0 (1)

Σn
i (axi + byi + czi + d)2 = 0 (2)

• if |kmax+kmin

2 | > εisP lane the sub-mesh corresponds to a sphere. The center and the radius of the sphere
are approximated using equation (3) which represents the distance between a point and the surface of the
sphere. A regression with a least square method is, also made in this case (equation (4)).

√
(x − xcenter)2 + (y − ycenter)2 + (z − zcenter)2 − Radius (3)

Σn
i ((xi − xcenter)2 + (yi − ycenter)2 + (zi − zcenter)2 − Radius2)2 = 0 (4)

In this case, the curvature value is used to check approximated parameters. The radius approximated is
compared with curvature average : Q = |Radius− kmax+kmin

2 |. An important value of Q implies a problem
on the process of extraction. For example, it can be produced by a mistake in segmentation when two
spheres with a same radius are adjacent. When this problem is detected, the sub-mesh is segmented again
by taking into account the normal to assess if the center is the same for each point.

3.2 Cones and Cylinders

A cylinder is a particular cone, so these two primitives have the same curvature behavior. Cone or Cylinder
points have kmin = 0, −−−−→Dirmin corresponding to the generating line and kmax is equal to the inverse of the cone
or cylinder radius. Moreover if a point is translated with a vector equal to the normal multiplied by 1

kmax
, it will

be on the rotation axis, as shown Figure 2. These primitives are characterized by two axis: the rotation axis
and the generating line. The rotation axis is defined by a vector and by a point, which is the cone vertex or any
axis point for cylinder. The generating line which is determined by an angle (between the rotation axis and the
generating line) for cone and by a radius (which is the distance between the rotation axis and the generating
line) for cylinder.

To know if two points are in the same cylinder or more generally in the same cone, the following criterion is
defined. For these two points, a potential point on the axis is deduced by using the normal and the curvature.
Then a potential axis is defined, and the angles between this axis and the directions equal to 0 are compared. If
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Figure 2: Cylinder and Cone features

the angles are equal, the two points belong to the same cone. On Figure 3, P1 and P2 are on the same cone, so
α1 = α2.

Figure 3: Criterion to test if two points belong to the same cone

This criterion is used to extract the sub-mesh corresponding to cone or cylinder. If two neighbor points follow
a kmin < εisConic, these points belong to a cone. Then to be sure that they belong to the same cone, the criterion
is used. After their neighborhood are studied, to increase the sub-mesh.

Finally, for each points of the sub-mesh, the rotation axis is approximated with vertices computed using the
normal and the inverse of the not null curvature. The generating axis is determined, computing the average of
the angles, α, between the rotation axis and the direction, for which the curvature is null. If the αaverage <
εisCylinder , the sub-mesh correspond to a cylinder, and its radius is obtained by an average of the curvature
inverse. Otherwise, it is a cone, and the generating line, is defined by the angle: αaverage.

4. EXPERIMENTAL RESULTS

The method was implemented as a plug-in in the C4W ∗ software, 3D Shop†. To assess our method, several tests
were done: we took B-Rep models which we discretized in order to apply our method. Then, we compare the
original and the computed parameters, with a precision 0.001.

4.1 Assessment of the method

A simple CAD object TestObject, shown Figure 4, was created with 7 planes, 1 sphere, 1 cylinder and 1 cone.
It contains also 2 blending surface between planes, which can be considered as cylinders, due to the constant
radius. All parameters of the primitives are given in the Table of Figure 4. The object is then discretized by
using the standard function of C4W.

∗C4W is a company which develops innovative CAD solutions and, supports this work (http://www.c4w.com).
†www.c4w.com/3d-cad-software.html
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Blend1

Plane1

Plane7

Parameter Values

Sphere Center (x;y;z) 0;20;0
Radius 15

Cylinder Axis (x;y;z) 0;0;1
Radius 10

Blend1 Axis (x;y;z) 0;0;1
Radius 5

Cone Axis (x;y;z) 0;0;1
Angle 0.643

Plane 1 Coefficients (a;b;c;d) -0.05;0;0;1
Plane 7 Coefficients (a;b;c;d) 0;0;-0.011;1

Figure 4: CAD object: TestObject with its parameters

Figures 5, 6 and 7 show three meshes, MeshObject1, MeshObject2 and MeshObject3, obtained by discretizing
the same CAD object at different resolutions (respectively 55,318; 6,434 and 1,712 triangles). This will allow
one to check the behavior and the robustness of our method. All the recovered primitives are shown in Figures
10, 11 and 12.

Figure 5:
MeshObject1 :
55,318 triangles

Figure 6:
MeshObject2 : 6,434
triangles

Figure 7:
MeshObject3 : 1,712
triangles

Figure 8:
MeshObjectIrreg:
9,938 triangles

Figure 9:
MeshObjectSparse:
1,034 triangles

On the MeshObject1 and MeshObject2, all primitives are recovered and then the object can be completely
reconstructed. To evaluate our method, an error is computed by the relative difference between initial and
reconstructed parameters for each primitive. For the sphere, the error is lower than 0.01% for the center and the
radius on the mesh MeshObject1, MeshObject2 and MeshObject3. In the case of the cone and the cylinders, the
errors corresponding to the deviation angle for the rotation axis, are lower than 0.01%. For the cone, the error
for the angle, between the two axis, is 0.01% for MeshObject1 and 0.2% for MeshObject2 and MeshObject3. For
the cylinder, the radius error are 0.02% for MeshObject1 and 0.2% for MeshObject2. The radius error of the
cylinders for the blends, are included between 1% and 4%. To compare the planes, the angle given by the normal
of the reconstructed object and of the reference one is studied. For all planes in the three meshes, if the plane
is detected, the angle error is lower than 0.01%. First results on a simple use case are correct. The detected
primitives are very closed to the reference one and appear sufficient in the frame of our industrial application.

The object TestObject, was discretized in a irregular way to obtain the mesh MeshTestIrregular, shown Figure
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Figure 10:
Primitives from
MeshObject1

Figure 11:
Primitives from
MeshObject2

Figure 12:
Primitives from
MeshObject3

Figure 13:
Primitives from
MeshObjectIrreg

Figure 14:
Primitives from
MeshObjectSparse

8. To create this mesh, we use points on the B-Rep model, but they are not extract using the isoparametrics.
Figure 13 presents the result: in this case all primitives are extracted except the blends. The error parameter
values for planes are lower than 0.01% and for the sphere, the cone and the cylinder, they are included between
0.03% et 1.99%.

Due to the weak number of triangles in MeshObject3, few primitives are found. In this particular case,
the curvature is not precisely computed. The neighborhood of each vertex is not sufficient and the compu-
tation is disturbed by neighbors belonging to others primitives. A particular case is exhibited in the Figure
9(MeshObjectSparse). Only a sphere is extracted (Figure 14), whereas the mesh is an exact discretization of the
B-Rep model. This sparse mesh problem can be avoided by introducing a pre-segmentation step to restrict the
vertex neighborhood. For instance, by analyzing the dihedral angles, it is possible to compute a simple segmen-
tation as shown Figure 15 where each sub-mesh is described with a different color. With this pre-processing, all
primitives are found (Figure 16). The parameters of planes and sphere are approximated with an error lower
than 0.01%. For the cone and cylinders, errors on axis are lower than 0.01%. The cone angle error is equal to
0.07%. the radius cylinder is equal to 0.3% but the blend radius is quite large, 21.8%. All of these results are
synthesized in Table 2.

Figure 15: MeshTestSparse
segmented

Figure 16: Primitives from
MeshObject4 segmented
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MeshObject1 MeshObject2 MeshObject3 MeshObjectIrregular MeshObjectSparse

Sphere Center (x;y;z) 0;19.999;0 0;19.999;0 0;19.999;0 0.07;19.912;-0.003 0;19.999;0
Radius 14.999 14.999 14.999 15.104 14.999

Cylinder Axis (x;y;z) 0;0;1 0;0;1 Not Detected -0.019;0.0043;1 0.003;0;1
Radius 9.998 9.997 Not Detected 9.924 9.975

Blend1 Axis (x;y;z) 0;0;1 0;0;1 0.001;0.002;1 Not Detected 0.006;-0.007;1
Radius 5.054 5.222 5.064 Not Detected 6.092

Cone Axis (x;y;z) 0;0;1 0;0;1 Not Detected -0.0351;0.0147;1 0.002;0;1
Angle 0.643 0.644 Not Detected 0.631 0.644

Plane 1 Coefficients (a;b;c;d) -0.05;0;0;1 -0.05;0;0;1 Not Detected -0.05;0;0;1 -0.05;0;0;1
Plane 7 Coefficients (a;b;c;d) 0;0;-0.011;1 0;0;-0.011;1 0;0;-0.011;1 0;0;-0.011;1 0;0;-0.011;1

Table 2: Table of primitive parameters computed

4.2 Industrial CAD data
4.2.1 Motor

The same process was performed on a complex CAD object, a motor (see Figure 17) which was provided by
Aim@SHAPE Project‡. The discretization of the B-rep model gives 22,482 triangles (see Figure 18). Our method
detect many primitives, 26 planes and 25 cylinders (see Figure 19). A comparison between the original and the
approximated parameters is presented in the Table 3 for three primitives. The results are very satisfying.

Figure 17: B-Rep model of a
motor

Figure 18: MotorMesh: 22,482
triangles

Blend

Plane

Cylinder

Figure 19: Extracted primitives

Original Values MotorMesh

Cylinder Axis (x;y;z) 0;0;1 0;0;0.999
Radius 33.5 33.499

Blend Axis (x;y;z) 0;0;1 0;0;0.999
Radius 7 7.079

Plane Coefficients (a;b;c;d) 0;0.024;0;1 0;0.024;0;1
Table 3: Table of primitive parameters computed from MotorMesh

4.2.2 Pump

Our method was also tested on a real industrial object, corresponding to an oil pump commercialize by the
Viking Pump§ company. The B-Rep model (see Figure 20), was discretized to obtain the mesh presented in

‡http://shapes.aimatshape.net/viewgroup.php?id=1242
§http://www.vikingpump.com/en/engineering/3dmodels.html
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Figure 21, which contains 158,746 triangles. Figures 22 and 23 present primitives which are extracted from the
mesh. 1 sphere, 9 planes, 13 cylinders and 1 cone are found. Moreover 31 cylindrical blends are detected, (see
Figure 24). The Table 4 shows a comparison between the exact (in millimeters) and the computed parameters
for three primitives.

Figure 20: B-Rep model of a
pump

Figure 21: PumpMesh: 158,746
triangles

Figure 22: Extracted primitives

Cylinder1

Cylinder2

Sphere

Figure 23: Extracted primitives Figure 24: Zoom on some extracted
cylindrical blends

Original Values PumpMesh

Cylinder1 Axis (x;y;z) 1;0;0 0.999;-0.011;-0.004
Radius 49.669 49.669

Cylinder2 Axis (x;y;z) 0;0;1 -0.006;1;0.002
Radius 34.162 34.175

Sphere Center (x;y;z) 409.175;367.654;515.722 409.167;367.682;515.780
Radius 23.114 23.088

Table 4: Table of primitive parameters computed from PumpMesh

5. CONCLUSION AND PERSPECTIVES

In this paper, a new method to detect and to compute their parameters from a 3D mesh is presented. These two
steps are based on the curvature features. This method gives preliminary correct results with CAD meshes, even
if they are a composed of a lot of objects. The results appear good enough to be used in our industrial process.

To improve our method, we have first to modify the computation of the cone and cylinder parameters. Like
for planes and spheres an approximation on points cloud, should give better results than averages. Nevertheless
we plan to keep the latter method in order to make verification. Others primitives like torus or revolution surfaces
which present particular curvature features, could also be considered.

The tests which we have done by pre-segmenting the mesh show that it improves the result, so we plan to
integrate this step in our method. For the first tests, the segmentation is based on dihedral angle and this local
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criterion gives good result on simple objects. But a global criterion like curvature variation for example, should
give a real and general improvement.

To generalize our method, we now have to adapt our method to take into account noisy meshes, resulting
from 3D-scanning for example. The process will be the same, but the thresholds used during the detection and
the fitting, have to be adapted.

To finish, this method should be developed by adding a step to trim the primitives with correct boundaries.
The boundaries could be extracted by computing the intersections between the continuous representation of the
adjacent primitives.
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